Home » Nonfiction » Basant Agarwal » Prominent Feature Extraction for Sentiment Analysis

January 21 , 2011

Prominent Feature Extraction for Sentiment Analysis


The objective of this monograph is to improve the performance of the sentiment analysis model by incorporating the semantic, syntactic and common-sense knowledge. This book proposes a novel semantic concept extraction approach that uses dependency relations between words to extract the features from the text. Proposed approach combines the semantic and common-sense knowledge for the better understanding of the text. In addition, the book aims to extract prominent features from the unstructured text by eliminating the noisy, irrelevant and redundant features. Readers will also discover a proposed method for efficient dimensionality reduction to alleviate the data sparseness problem being faced by machine learning model.

Download AZW

Read also

Hegel: A Very Short Introduction

Many people regard Hegel's work as obscure and extremely difficult, yet his importance and influence are universally acknowledged. Professor Singer eliminates any excuse for remaining ignorant of the outlines of Hegel's philosophy by providing a broad discussion of his ideas and an account of his major works. ABOUT THE SERIES: The Very Short…

Authors pay attention to the four main findings of the book :
-Performance of the sentiment analysis can be improved by reducing the redundancy among the features. Experimental results show that minimum Redundancy Maximum Relevance (mRMR) feature selection technique improves the performance of the sentiment analysis by eliminating the redundant features.
- Boolean Multinomial Naive Bayes (BMNB) machine learning algorithm with mRMR feature selection technique performs better than Support Vector Machine (SVM) classifier for sentiment analysis.
- The problem of data sparseness is alleviated by semantic clustering of features, which in turn improves the performance of the sentiment analysis.

- Semantic relations among the words in the text have useful cues for sentiment analysis. Common-sense knowledge in form of ConceptNet ontology acquires knowledge, which provides a better understanding of the text that improves the performance of the sentiment analysis.

Show more...

How to download book

Buy this book

You can buy this book now only for $84.09. This is the lowest price for this book.

Buy book

Download book free

If you want to download this book for free, please register, approve your account and get one book for free.


After that you may download book «Prominent Feature Extraction for Sentiment Analysis»:

Download TXT:


Download XML Book: