Home » Nonfiction » KaplanDavid » Bayesian Statistics for the Social Sciences

February 11 , 2010

Bayesian Statistics for the Social Sciences


Bridging the gap between traditional classical statistics and a Bayesian approach, David Kaplan provides readers with the concepts and practical skills they need to apply Bayesian methodologies to their data analysis problems. Part I addresses the elements of Bayesian inference, including exchangeability, likelihood, prior/posterior distributions, and the Bayesian central limit theorem. Part II covers Bayesian hypothesis testing, model building, and linear regression analysis, carefully explaining the differences between the Bayesian and frequentist approaches. Part III extends Bayesian statistics to multilevel modeling and modeling for continuous and categorical latent variables. Kaplan closes with a discussion of philosophical issues and argues for an "evidence-based" framework for the practice of Bayesian statistics.Useful features for teaching or self-studyIncludes worked-through, substantive examples, using large-scale educational and social science databases, such as PISA (Program for International Student Assessment) and the LSAY (Longitudinal Study of American Youth).Utilizes open-source R software programs available on CRAN (such as MCMCpack and rjags); readers do not have to master the R language and can easily adapt the example programs to fit individual needs.Shows readers how to carefully warrant priors on the basis of empirical data.Companion website features data and code for the book's examples, plus other resources.
Show more...

How to download book

Buy this book

You can buy this book now only for $43.19. This is the lowest price for this book.

Buy book

Download book free

If you want to download this book for free, please register, approve your account and get one book for free.


After that you may download book «Bayesian Statistics for the Social Sciences»:

Download PDF:


Download MobiPocket: